Documentation

SemVer.Lemmas

@[simp]
theorem NonEmptyList.inj_incr {α : Type} [LT α] (a b : NonEmptyList α) :
a < b a.val < b.val

Ensures that the canonical injection

fun {α} a ↦ a.val : {α : Type} → NonEmptyList α → List α

is strictly increasing under the respective <-relations.

@[simp]
theorem NonEmptyList.lt_trans {α : Type} [LT α] [g : Trans (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2] {a b c : NonEmptyList α} (h1 : a < b) (h2 : b < c) :
a < c

Asserts that < is a transitive relation inNonEmptyList α if the underlying < on α has the same property.

instance NonEmptyList.instTransLt {α : Type} [LT α] [Trans (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2] :
Trans (fun (x1 x2 : NonEmptyList α) => x1 < x2) (fun (x1 x2 : NonEmptyList α) => x1 < x2) fun (x1 x2 : NonEmptyList α) => x1 < x2
Equations
@[simp]

Assert that the canonical injection

fun a ↦ a.val : NonEmptyStringString

is a strictly increasing function under the respective <-relations.

@[simp]
theorem NonEmptyString.lt_trans {a b c : NonEmptyString} (h1 : a < b) (h2 : b < c) :
a < c

Asserts that < is transitive on NonEmptyString.

instance NonEmptyString.instTransLt :
Trans (fun (x1 x2 : NonEmptyString) => x1 < x2) (fun (x1 x2 : NonEmptyString) => x1 < x2) fun (x1 x2 : NonEmptyString) => x1 < x2
Equations
@[simp]
theorem Digits.lt_trans {a b c : Digits} (h1 : a < b) (h2 : b < c) :
a < c

Asserts that < is transitive on Digits.

instance Digits.instTransLt :
Trans (fun (x1 x2 : Digits) => x1 < x2) (fun (x1 x2 : Digits) => x1 < x2) fun (x1 x2 : Digits) => x1 < x2
Equations
@[simp]
theorem NumIdent.lt_trans {a b c : NumIdent} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on NumIdent.

instance NumIdent.instTransLt :
Trans (fun (x1 x2 : NumIdent) => x1 < x2) (fun (x1 x2 : NumIdent) => x1 < x2) fun (x1 x2 : NumIdent) => x1 < x2
Equations
@[simp]
theorem Ident.lt_trans {a b c : Ident} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on Ident.

instance Ident.instTransLt :
Trans (fun (x1 x2 : Ident) => x1 < x2) (fun (x1 x2 : Ident) => x1 < x2) fun (x1 x2 : Ident) => x1 < x2
Equations
@[simp]
theorem AlphanumIdent.lt_trans {a b c : AlphanumIdent} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on AlphanumIdent.

instance AlphanumIdent.instTransLt :
Trans (fun (x1 x2 : AlphanumIdent) => x1 < x2) (fun (x1 x2 : AlphanumIdent) => x1 < x2) fun (x1 x2 : AlphanumIdent) => x1 < x2
Equations
@[simp]
theorem PreRelIdent.lt_trans {a b c : PreRelIdent} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on PreRelIdent.

instance PreRelIdent.instTransLt :
Trans (fun (x1 x2 : PreRelIdent) => x1 < x2) (fun (x1 x2 : PreRelIdent) => x1 < x2) fun (x1 x2 : PreRelIdent) => x1 < x2
Equations
@[simp]
theorem DotSepPreRelIdents.lt_trans {a b c : DotSepPreRelIdents} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on DotSepPreRelIdents.

instance DotSepPreRelIdents.instTransLt :
Trans (fun (x1 x2 : DotSepPreRelIdents) => x1 < x2) (fun (x1 x2 : DotSepPreRelIdents) => x1 < x2) fun (x1 x2 : DotSepPreRelIdents) => x1 < x2
Equations
@[simp]
theorem VersionCore.lt_trans {a b c : VersionCore} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on VersionCore.

instance VersionCore.instTransLt :
Trans (fun (x1 x2 : VersionCore) => x1 < x2) (fun (x1 x2 : VersionCore) => x1 < x2) fun (x1 x2 : VersionCore) => x1 < x2
Equations
@[simp]

Lemma asserting that Version.ltPreRelease is transitive.

@[simp]
theorem Version.lt_trans {a b c : Version} (h1 : a < b) (h2 : b < c) :
a < c

Ensures that < is transitive on Version.

instance Version.instTransLt :
Trans (fun (x1 x2 : Version) => x1 < x2) (fun (x1 x2 : Version) => x1 < x2) fun (x1 x2 : Version) => x1 < x2
Equations