@[simp]
Ensures that the canonical injection
fun {α} a ↦ a.val : {α : Type} → NonEmptyList α → List α
is strictly increasing under the respective <-relations.
@[simp]
theorem
NonEmptyList.lt_trans
{α : Type}
[LT α]
[g : Trans (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2]
{a b c : NonEmptyList α}
(h1 : a < b)
(h2 : b < c)
:
Asserts that < is a transitive relation inNonEmptyList α if the
underlying < on α has the same property.
instance
NonEmptyList.instTransLt
{α : Type}
[LT α]
[Trans (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2]
:
Trans (fun (x1 x2 : NonEmptyList α) => x1 < x2) (fun (x1 x2 : NonEmptyList α) => x1 < x2)
fun (x1 x2 : NonEmptyList α) => x1 < x2
Equations
- NonEmptyList.instTransLt = { trans := ⋯ }
@[simp]
Assert that the canonical injection
fun a ↦ a.val : NonEmptyString → String
is a strictly increasing function under the respective <-relations.
@[simp]
Asserts that < is transitive on NonEmptyString.
instance
NonEmptyString.instTransLt :
Trans (fun (x1 x2 : NonEmptyString) => x1 < x2) (fun (x1 x2 : NonEmptyString) => x1 < x2)
fun (x1 x2 : NonEmptyString) => x1 < x2
Equations
- NonEmptyString.instTransLt = { trans := ⋯ }
@[simp]
Ensures that < is transitive on AlphanumIdent.
instance
AlphanumIdent.instTransLt :
Trans (fun (x1 x2 : AlphanumIdent) => x1 < x2) (fun (x1 x2 : AlphanumIdent) => x1 < x2) fun (x1 x2 : AlphanumIdent) =>
x1 < x2
Equations
- AlphanumIdent.instTransLt = { trans := ⋯ }
@[simp]
Ensures that < is transitive on PreRelIdent.
instance
PreRelIdent.instTransLt :
Trans (fun (x1 x2 : PreRelIdent) => x1 < x2) (fun (x1 x2 : PreRelIdent) => x1 < x2) fun (x1 x2 : PreRelIdent) => x1 < x2
Equations
- PreRelIdent.instTransLt = { trans := ⋯ }
@[simp]
Ensures that < is transitive on DotSepPreRelIdents.
instance
DotSepPreRelIdents.instTransLt :
Trans (fun (x1 x2 : DotSepPreRelIdents) => x1 < x2) (fun (x1 x2 : DotSepPreRelIdents) => x1 < x2)
fun (x1 x2 : DotSepPreRelIdents) => x1 < x2
Equations
- DotSepPreRelIdents.instTransLt = { trans := ⋯ }
@[simp]
Ensures that < is transitive on VersionCore.
instance
VersionCore.instTransLt :
Trans (fun (x1 x2 : VersionCore) => x1 < x2) (fun (x1 x2 : VersionCore) => x1 < x2) fun (x1 x2 : VersionCore) => x1 < x2
Equations
- VersionCore.instTransLt = { trans := ⋯ }
@[simp]
theorem
Version.ltPreRelease_trans
{a b c : Version}
(h1 : a.ltPreRelease b = true)
(h2 : b.ltPreRelease c = true)
:
Lemma asserting that Version.ltPreRelease is transitive.